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Various numerical methods for the solution of linear stability equations for compressible 
boundary layers are compared. Both the global and local eigenvalue methods for temporal 
stability analysis are discussed. Global methods are used to compute all the eigenvalues of the 
discretized system. When a guess for the desired eigenvalue is available, local methods may 
be used both to purify the eigenvalue and compute the associated eigenfunctions. The 
extension to spatial stability analysis is also considered. The discretizations studied include: a 
second-order finite-difference method, a fourth-order accurate two-point compact difference 
scheme, and a Chebyshev spectral collocation method. Eigenvalue results are presented for 
Mach numbers up to 10. As the Mach number increases, the performance of the spectral 
method deteriorates due to the outward movement of the critical layer. To alleviate this 
problem, a multi-domain spectral collocation method is developed which exhibits better 
convergence. The overall performance of the fourth-order compact scheme is excellent. Our 
results also indicate that, in the limit of vanishing Mach number, there exist stable discrete 
modes in addition to the discrete modes of the Orr-Sommerfeld equation. ‘f 1990 Academic 

Press, Inc. 

1. INTRODUCTION 

This paper deals with the numerical solution of the eigenvalue problem 
associated with the linear stability of compressible boundary layers. The com- 
pressible analogue of the well-known Orr4ommerfeld equation is a coupled set of 
five ordinary differential equations. These include three second-order momentum 
equations, one second-order energy equation, and one first-order continuity 
equation. Following the approach used by Lees and Lin [ 11, this system may be 
reduced to a set of eight first-order ordinary differential equations [2-31. For high 
Mach number flows, real gas effects become important. If the real gas is considered 
to be a reacting mixture of perfect gases in chemical equilibrium, then the order of 
the governing stability equations remains the same. If the mixture is in non- 
equilibrium due to finite-rate reactions, the species continuity equations must be 
solved coupled with the fluid mechanics equations. The order of the governing 
equations then increases according to the number of species included in the gas 
model. In this paper, we describe the numerical methods as they are applicable to 
the perfect gas equations. The extension to real gas systems does not offer any 
complications, at least, conceptually. 
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HYPERSONIC BOUNDARY LAYER STABILITY 27; _I I ? 

The numerical schemes used for solving the compressible linear stability problem 
may be broadly classified into initial value methods jfVM) and boundary value 
methods (BVM). Mack [2-31 perfected the use of initial value methods for corn- 
pressible boundary layer stability. This method consists of constructing independent 
initial value problems whose solutions satisfy the eighth-order set of differential 
equations and conditions at the free-stream boundary. The solution is integrated 
towards the solid boundary by using RungeeKutra integration and it is required 
that a linear combination of the solutions satisfies the boundary conditions at the 
wall. In other words. the relevant characteristic determinant is made to vanish, rhus 
yielding the eigenvalue of the differential system. The problem associated with the 
growth of the parasitic errors is treated by using the Gram-Schmidt orthcnor- 
mahzation procedure at selected integration steps. In Mack’s code, this procedure 
is automated. Another computer code has been devised by Scott and Warts 14: 
where this procedure is used for the solution of two-point boundary vaiue 
problems. ‘This code has also been used for compressible linear stability by several 
researchers. The main advantage of IVMs is the minimal computer memory 
requirement and their capacity to adjust the integration to local conditions. The 
r”sisadvantage is that they require a good guess of the eigenvahte. For spatial 
stabiiity of high Mach number flows this may require that the eigenvalue be knowr 
to be accurate to three or four decimal places for the method to converge. This ais~i 
means that there is always a risk of missing some modes. 

In a boundary value method (BVM) the differential equations are reduced to 
hnear algebraic equations using either a finite-difference discretizat~o~ or a spec~~i 
representation. The global eigenvalues can be obtained by solving the characteristic 
determinant of a generalized eigenvalue problem. The number of eigenvaiues thi_is 
obtained is proportional to the number of grid points used. If a guess of the eigen- 
value is available. then the eigenvalue may be purified by a iocal eigenvalue search 
procedure involving matrix inversion and Newton iteration. The methods of Orszag 

51 for the Orr-Sommerfeld problem and Mahk and Orszag [6] for the corn- 
pressible stability problem are examples of boundary value methods. The main 
advantage of BVMs is their ability to yield eigenwalues when no knowledge of thr 
instability is available for the problem of interest. Suitable transformations may be 
constructed to resolve optimally the critical Layers. The disa antage of BVMS lies 
in their hig’her demand on computational resources, bo memory end iimc:, 
However, for local eigenvalue search, some BVM methods may outperform IVMs 
in computer time requirements. The method of M&k. Chuan.g7 and Hussain~ ;‘?] 
is an examnle of such a BVM method. 

In an in&mpressible boundary layer flow, the critical layer hes close to the wall. 
Methods based upon the Chebyshev spectral approach are a natural choice for 
BVM schemes since Chebyshev polynomials resolve the boundary regmas 
extremely well. This is the reason for the success of the method of Brszag [5] and 
Bridges and Morris [S]. Both these methods are based upon Chebyshev spectraL 
tau approach. Herbert [9] and Spalart [lo] have apphed spectra1 cohocation 
techniques to the Orr-Sommerfeld problem, Bramley [ 111 used the method F:>r [he 
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pipe Poiseuille flow. Recently, Khorrami, Malik, and Ash [12] have developed a 
Chebyshev spectral collocation method for the stability of incompressible, confined, 
and unconfined vertical flows. In [12], the governing equations were represented 
in the primitive variable formulation so that the method is easily extended to the 
compressible linear stability analysis. 

As the Mach number increases, the critical layer moves away from the wall 
towards the edge of the boundary layer. For example, the critical layer lies in the 
neighborhood of 0.2 6 for M = 0 and at 0.9 6 for M= 10, where 6 is the boundary 
layer thickness. This suggests that Chebyshev spectral methods may not be a 
natural choice for hypersonic boundary layer stability. In this paper we compare 
four methods of solution and study their performance as the Mach number is 
increased. The first method is based upon a second-order finite-difference discretiza- 
tion used by Malik and Orszag [6]. The second method is another finite-difference 
scheme which is fourth-order accurate and was developed by Malik, Chuang, and 
Hussaini [7]. The third method is based upon Chebyshev spectral collocation and 
is an extension of the method of Khorrami, Malik, and Ash [12] to compressible 
flows. Finally, we develop a new multi-domain spectral collocation scheme for 
application to the stability of high speed flows. All these methods belong to the 
class of methods labelled BVM above. 

2. THE GOVERNING EQUATIONS 

The Navier-Stokes equations governing the flow of a viscous compressible ideal 
gas are 

p [ $+(q.V)q 1 = -vp+v~[A(v.q)~]+v.[p(vq+vq”)] (2.1) 

dT 
pc, 

i 
-&+(q.V)r =v.(kvT)+~+(q.v)p+@ 1 

(2.2) 

(2.3) 

p = P% (2.4) 

where q is the velocity vector, p the density, p the pressure, r the temperature, $3 
the gas constant, cp the specific heat, k the thermal conductivity, p the first coef- 
ficient of viscosity, and 1 the second coefficient of viscosity. The viscous dissipation 
@ is given as 

CD = qv . qy + f [Vq + vqty (2.5) 

The governing equations for the steady, basic flow may be derived by invoking 
the boundary layer assumption. The stability equations are then derived by 
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assuming small disturbances superposed on the basic flow and substitutn-tg in the 
above Navier-Stokes equations. Though real gas effects become important at 
hypersonic speeds in atmospheric flight, we consider ideal gas flow since the 
munerical methods developed here would be applicable to the real gas conditions. 

We consider boundary-layer flow past two-dimensional or axisymmetric bodies. 
The governing equations for the basic state whose stability is the scbject of this 
paper can be derived using the Mangler-Levy-Lees transformation 

d?] = [p,14,i(25)““](ri’Lij’ (p/p,) dy, ,, - 7 \ ,L.i I 

where pe is the edge density, ps the edge viscosity, U, the streamwise edge veicciry, 
rO the body radius. E, a reference length, .Y the distance along the body, and ‘8 
normal to it. The exponent j= 0 for a two-dimensional body and j= 1 for an 
axisymmetrjc body. In i: - “1 coordinates, the governing equations for the boundary 
layer flow may be written as [13] 

and x is the transverse curvature parameter, /? the pressure gradient parameter. ,ii 
the enthaipy, 7 the ratio of specific heats, and M the edge Mach number defined as 

&UE 
JiEy 

The Prandti number o is defined as 

where cP is the specific heat at constant pressure and is assumed to be constant. The 
viscosity p is assumed to be given by the Sutherland formula, 
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/1=22.27x lop8 
T’;’ 

1 + 198.6/T 
lb - sec/ft2. 

The thermal conductivity k may also be prescribed by a similar formula. For the 
results presented in this paper, however, we compute it by assuming CJ = 0.7. 

For a flat plate with no pressure gradient, the above equations (2.8)-(2.9) reduce 
to 

(cj-“)‘+ff”=O (2.12) 

(a, g’ + a,f:f”)’ + fg’ = 0 (2.13) 

which have been solved by a fourth-order accurate compact difference scheme [7] 
and Newton’s iteration method. No slip boundary conditions were used for either 
an insulated wall or for a specified wall temperature. 

Compressible Linear Stability Equations 

We use Cartesian coordinates x, I’, Z, where x is the streamwise direction, z the 
spanwise direction and 1’ is normal to the solid boundary. All the lengths are 
assumed scaled by a reference length 6, velocities by u,, density by pe, pressure by 
pezlz, time by t/u, and other variables by their corresponding boundary layer edge 
values. The instantaneous values of velocities, u, o, ~1, pressure p, temperature r, 
density p, may be represented as the sum of a mean and a fluctuation quantity, i.e., 

Zf=O+ii, II = v + i?, It’ = w + 6 

p=P+p”, s=T+F, p=p+p 

p=P+iL 1,=1+x, k= t?+E. 

Substituting these into the nondimensional form of the governing equations 
(2.1)-(2.4) yields the linearized perturbation equations (after dropping “bars” from 
the mean quantities) 
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(2.18) 

(2.19) 

where R = p,u,L//~~ is the Reynolds number, Pr = cppe/ke is the Prandtl number, y 
is the ratio of the specific heats, and I,= j+ A/,LL The mean equation of state is 

yM”P=pT. (2.20) 

We consider the stability of locally parallel compressible boundary layer flow. 
The “locally parallel flow” assumption is the same as used in the application of the 
Orr-Sommerfeld equation to the incompressible boundary layer flow. Under this 
assumption, 

u= U(y), v=o, w= W(y) 

T= KI), P = P(Y). 
(2.21) 

Due to the boundary layer assumption, P (see Eq. (2.20)) is constant across the 
layer and is equal to l/yM’. In that case p = l/T and Eq. (2.19) simplifies to 

(2.22) 

Equation (2.22) can be used to eliminate density p from Eq. (2.14)-(2.18). 
Furthermore, we can write 

(2.23) 
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SJsing Eq. (2.21\-(2.23), the governing equations (?.14)-(2.15) simplify TV 

1 d’p dTdt’ _ 
f------T 

p dr - dy d3 
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1 
~3’7 13’7 d’F 2 dk dTaF -+-+-+---- 
ax’ ay2 lb2 k dT dy 13y 

1 dk d’T 1 d2k d ’ --7+-7 - $7- 
k dT dy- (3) 1 k dT- 4~ 

(2.28) 

where c is the variable Prandtl number defined in Eq. (2.11). 
We may now assume that the velocity, pressure, and temperature fluctuations 

may be represented by a harmonic wave of the form 

(27, 6, C) = [ZQ), e(y), ~i.(4’)]ei(“x+~=-“” (2.29) 

j? =@(y)e i(X.Y + pz- ox) (2.30) 

T= f(y)e i(sr.x+/3-av, 3 (2.3 1) 

where TX, p are the wavenumbers and o is the frequency which, in general, are all 
complex. In temporal stability theory, CI, /I are assumed to be real and o is complex 
while the converse is true in the spatial stability theory. 

Substituting Eqs. (2.29)-(2.31) into Eqs. (2.24)-(2.28), it can be shown that the 
linear disturbances satisfy the following system of ordinary differential equations 

(ADZ+BD+C)t$=o, (2.32) 

where 4 is a five-element vector defined by 

{ 22, 6, @, F, I?} tr. 

Here D = d/dy, while A is given as 

1 
1 

0 

A= [ 0 
0 

1 
1 1 

and B, C are 5 x 5 matrices whose nonzero elements are given in Appendix I. Since 
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we are interested in two-dimensional basic flow here, the velocity component FV[ -1-j 
may be set to zero in the Appendix. For two-dimensional disturbances, the order 
of the system is reduced as rC momentum equation may be dropped. 

The boundary conditions for Eq. (2.32) are 

J’ = 0; dl=~~=(bJ=(bj=O (].jj 1. 

)‘-+ 26; 41~ 427 447 $5 +O. 03;: 

Here temperature perturbations are assumed to vanish at the solid boundary 
whereas the mean flow may be treated with an insulated wall. This is a reasonable 
assumption for high frequency disturbances where the temperature fluctuations wiii 
not penetrate deep into the solid boundary due to the thermal inertia of the solid 
body. In other words, the wall will appear insulated on the time scale of the mean 

ow but not on the short time scales of the disturbances. IIowever, for stationary 
disturbances (such as crossflow and Gortler), one may need to replace c$~(O: = 8 
in favor of c@,(O)/~J, or a combination thereof, depending upon the physdcal 
properties of the solid and the gas. The numerical methods that we describe could 
easily accommodate Neumann or mixed boundary conditions on temperature 
fiuctuations. 

Equations (2.32 j-(2.34) constitute an eigenvalue problem described by the 
complex dispersion relation 

and the determination of this relation is essentially the subject of this paper. 
Using the continuity equation, the second-order normal momentum equation 

may be reduced to a first-order equation for pressure. Thus the above !inear 
stability equations (2.32) may also be rewritten as a system of eight first-or&r 
equations 

%= f aojjj; i = 1. 2. .~.) 8, 

j= 1 

where 

with corresponding boundary conditions 

i 3.36 I 

The coefficients aii are given in Appendix II. 
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We note here that the governing set of five stability equations represented by 
Eq. (2.32) was derived by eliminating perturbation density from the continuity 
equation using the equation of state. This is only done to reduce the required 
computational work. One may also solve the system containing the (algebraic) 
equation of state coupled with the live differential equations (without eliminating 
density perturbations). This was indeed done by using the 2FD scheme described 
below and the computed eigenvalue spectrum was similar to that given by 
Eq. (2.32). 

3. NUMERICAL METHODS FOR STABILITY EQUATIONS 

There are two classes of numerical methods that can be used for computing the 
eigenvalues: global and local methods. For the global method a generalized eigen- 
value problem is set up and the eigenvalues are obtained by using standard 
algorithms such as LR or QR or QZ. These algorithms yield all the eigenvalues of 
the discretized system and a guess for the eigenvalues is not required. In a local 
method, a guess for the eigenvalue is required. Only the eigenvalue which happens 
to lie in the neighborhood of the guessed value is computed using iterative 
techniques such as Newton’s method. Global and local methods may use the same 
discretization. Global methods are computationally much more expensive than the 
local methods since they compute all the eigenvalues of the discretized system. 
Thus, the only rationale for using the global method is if no guess for the eigen- 
value is available or if the whole spectrum of eigenvalues is desired. In the spatial 
stabiliy of hypersonic boundary layers, several modes could lie close by and local 
methods fail to converge under these circumstances unless an extremely good guess 
for the desired instability mode is available. So, the global methods are particularly 
valuable for the hypersonic boundary layer stability problem. 

The methods we describe below could fall in the categories of both the global or 
local methods. However, we characterize them by the discretization used. The 
methods are first described for temporal stability where wave numbers CI, /3 are 
known and the desired eigenvalue is the complex frequency w. The extension to 
spatial stability where w is known and a is sought will be discussed in a later 
section. 

Second-Order Finite-Difference (2FD) Method 

The governing system of Eqs. (2.32) is represented using a second-order accurate 
finite-difference formula on a staggered mesh (see Fig. 1). 

First the boundary layer coordinate y, 0 < y < J’,,,, is mapped onto the com- 
putational domain 0 <ye < 1 by the algebraic mapping 

(3.1) 

where b = 1 + a/ymax. Here ymax is the location where free-stream boundary condi- 
tions are satisfied and a is a scaling parameter chosen to optimize the accuracy of 
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(FREE STREAM) 

-_--_--_--_- j +lt? 

^^?.A 
( u,v.w,T i .I 

i; ------------j-l.‘2 

-------------1,‘2 

FIG. 1. .A schematic of the staggered grid med for 2FD schezxe. 

the calculations. Here we use a = ymax 2’ij(J:max - Zy,) which puts half the nod!? 
points used for discretization between 1’ = 0 and ~2 = .I*!. 

The computational domain q is divided into equal intervals and the second-order 
equations are represented as 

where oj is the value of $ at f~ = j/N and has components 3%; jk = 1, 
‘i = 1, d2 = 0, except d, = 0, d, = 1 for the J? component of 

f Jb-r1)4 
1 b2a” 

f2= - 
2(b - q)’ 

b”$ 

.f = (b-v)’ -- 
3 ba 
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The first-order continuity equation is represented as 

f3 Bj+ 1:2 ~~+'-~~+c,+,,.,g+,;,=o d,l (j= 0, . . . . N- 1). (3.3) 

Equations (3.2)-(3.3) along with the eight boundary conditions (2.33))(2.34) 
represent 5N + 4 equations for 5N + 4 unknowns. Since the velocity and tem- 
perature disturbances are assumed to be identically zero at the solid boundary 
(9 = 0) the system reduces to 5N equations for 5N unknowns when these boundary 
conditions are applied. This is a block-tridiagonal system of equations with 5 x 5 
blocks. Note that no artificial pressure boundary conditions are needed since we use 
staggered mesh. 

When the discretized compressible stability equations (3.2)-(3.3), along with the 
boundary conditions (2.33)-(2.34) are formulated as a matrix eigenvalue problem, 
they take the form 

‘4) = wB$, (3.4) 

where o is the eigenvalue and Q is the discrete representation of the eigenfunction. 
The eigenvalue is determined by the determinant condition 

Det IA - WBI = 0. 

If B is invertible then (3.5) may be solved as 

(3.5 j 

Det I&‘A-wZl=O (3.6) 

which is the standard matrix eigenvalue problem, solvable by LR or QR methods 
[14]. Here BP’2 is a 5Nx 5N square matrix. Note that we only need one square 
matrix to set up and solve the eigenvalue problem since B is a block-tridiagonal 
matrix assuring efficient inversion. For the global problem, the boundary conditions 
used at y = ymaX are 

~=lj=~.=,;=(). (3.7) 

This implies that B is singular. Of course, the singularity can be removed from the 
system by explicitly substituting the values of li, B, f, and 16 from Eq. (3.7) into 
Eqs. (3.2)-(3.3), thus reducing the order of the system to 5N- 4. However, now the 
inversion of B is not simple. An alternative is to replace the boundary conditions 
(3.7) with conditions at J’= -vmax as 

(3.8) 



HYPERSONIC BOUNDARY LAYER STABILITY 589 

This allows efficient computation of B ‘A using block-tridiagonal solvers The 
eigenvalue solution using the LR method, for example, simply yields four additiona! 
eigenvalues CO = E associated with Eq. (3,8). Vaiuer of E = I and lo- ” were tried 
and no effect on the desired physical eigenvalues was observed. This was tested by 
replacing (3.8) with the actual boundary conditions (3.7) and solving the 
generalized eigenvalue problem (3.4) by using the QZ algorithm. Use of (3.8) nor 
only eliminates the need for storage of one square matrix, it also enables one to 
compute the eigenvalues in substantially less computer time as we wili discuss in 
Section 4 below. 

Using finite-difference discretization above, a local method was also developed in 
[6] using the inverse Rayleigh iteration procedure [14]. Now, the boundary condi-. 
tions at I*= j‘max are either those given by Eq. (3.7) or those derived from the 
asymptotic structure of Eq. (2.32) in the free stream. The Latter option aiiows the 
boundary conditions to be imposed at a lower value of .I’,,,? i.e., just outside the 
boundary layer. Within the context of finite-difference methods, the local metb~od 
described below, using a fourth-order accurate compact difference scheme. is to be 
preferred. We will describe the inverse Rayleigh iteration method within the comx 
of spectral collocation methods. 

Fmrtt’khder Compact Dzffeerence i,4CD) Scheme 

This scheme is suitable for solving eigenvalue problems represented as a system 
of first-order equations as in Eqs. (2.36). We use the fourth-order accurate two- 
point scheme which is derived by means of the Euler-Maclaurin formula 

where Yk= Y(J,) and II,= J’~- jsk- I. 
In order to apply this scheme to Eq. (2.36) we set 

where 

us Eq. (3.9) becomes 
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As in [7], the above equation system along with the boundary conditions 
(2.37)-(2.38) can be rewritten in the block-tridiagonal form 

A,Yk~l+Bk~k+Ck~k+l=H, (3.11) 

where A,, B,, C, are 8 x 8 matrices and H is a 8 x 1 null matrix. The above 
equation (3.11) may also be written as 

where 

LY= H, (3.12) 

L = [A/c, B,, c/cl. 

Since we have eight equations now instead of five, this discretization scheme is 
not suitable for a global method where it is desirable to keep the order of the equa- 
tions at its minimum due to computational considerations. For higher accuracy in 
a global eigenvalue search, we will turn to spectral collocation methods in the next 
section. An advantage of the present scheme, however, is that for local solution the 
order of the system remains the same for temporal and spatial stability. This is not 
the case for global methods as we will discuss later. 

For the local eigenvalue problem, we solve the block-tridiagonal system of 
Eqs. (3.12), using LU factorizations. Note that Eq. (3.12) is homogeneous. In order 
to avoid a trivial solution, nonhomogeneous boundary conditions are imposed at 
the wall. Specifically, the boundary condition $i(O) = 0 is replaced by ti4(0) = 1. 
This is equivalent to normalizing the eigensolution by the value of the pressure 
perturbation at the wall. Since pressure does not vanish at the wall, the normalizing 
condition $4(O) = 1 is appropriate. Other normalizations are also possible [7]; 
however, our experience indicates that normalizing with pressure gives the best 
results in the sense of rate of convergence and radius of convergence. 

Since Eq. (3.12) is now nonhomogeneous, a nontrivial solution may be obtained 
for the guessed eigenvalue o = cog. Newton’s method is then used to iterate on w 
such that the missing boundary condition $,(O) =0 is satisfied. Thus, when a 
solution !P is obtained for oO, the correction dw is determined from the equation 

(3.13) 

where $i(O) is known from the solution Y just obtained; i3$,(0)/& is obtained by 
solving 

(3.14) 

The process is repeated until $,(O) vanishes within preassigned tolerance. Note 
that Eqs. (3.12) and (3.14) can be solved with the same LU factorizations. 
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A higher order iterative method may also be derived by asing Taylor’s series Irr 
this case, Eq, (3.13) is replaced by 

If dw’ is substituted in this equation from Eq. (3.131, then we have 

The new unknown 8$,(0)/&x is obtained from the solution of 

which may also be solved by using the same EU factorization as used for the 
sohltion of Eq. (3.12). 

This higher order scheme converges faster in terms of the number of iterat!cns 
but there appears to be no significant advantage o~i computational cost since t;le 
work required per iteration increases. The latter scheme does appear to have some- 
what larger radius of convergence. In some very sensitive calculations involving the 
compressible Giirtler instability, the higher order scheme converged while it becaxx 
difficult to obtain eigenvalues using Eq. (3.13 ). 

Since the fourth-order accurate discretization uses two node points, any arbitrary 
distribution of node points may be used in order to cluster points in the critical 
layer. Here lJ;e used the distribution of points given by 

an 

!‘= ).;+A!L. 
h-t?’ 

)’ > j’j, 

where 

where y0 is chosen to give the appropriate distribution of points. In the present 
study, it was taken to be the location of the edge of the thermal boundary layer 
defined as T,/T=0.99. One-half of the total node points are used in the region 
.I’< 1’. I 1’ 
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Single Domain Spectral (SDSP) Collocation Method 

The implementation of a spectral algorithm based upon collocation is almost as 
straightforward as the finite-difference scheme once the derivative matrices are set 
up. The use of collocation also simplilies the treatment of boundary conditions and 
coordinate transformations. We use Nth order Chebyshev polynomials TN defined 
on the interval - 1 < t,i d 1, where the collocation points tj are the extrema of TN 
and are given as 

cfj = cos $; j=O, 1, . . . . N. (3.20) 

In order to apply the spectral collocation method, an interpolant polynomial is 
constructed for the dependent variables in terms of their values at the collocation 
points. Thus an Nth order polynomial may be written as 

d(5)= 5 hk(5) 45k)r (3.21) 
k=O 

where the interpolant Ak(5) for the Chebyshev scheme is given as 

where 
co=cN=2 and ck= 1, O<k<N. 

The first derivative of &5y) may be written as 

$ij=kto Ejkbk, 

where Eik are the elements of the derivative matrix given as [lS] 

(3.22) 

(3.23) 

’ 
j#k 

Ei, = - cj 

31 -r;, 

E =2N2+1 
00 -z--E 

6 N.V . 

If the scaling factor for the transformation between physical and computational 
domains is given as 

sj = ay/c?y Ii; j=O, 1, . . . . N, 

then the first derivative matrix F in the physical domain may be written as 

Fik = sj Ejk (3.24) 
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and the second derivative matrix G,, is simply 

Now the governing equation (2.32) may be written at the collocation poicts ,c,! 
as 

A, 5 Gjk+k + B,; $ F,,$, + Gi f3.255 
k=O k=O 

We use the boundary conditions given by Eqs. (2.33 i-(2.34) at 2: =O azd 
?‘-- 1’ ,’ - r’ma*’ In addition, we use Neumann conditions on pressure as 

where x0 and xrn are prescribed by evaluating the normal momentum equation ar 
the two boundaries. The extra boundary conditions are needed because we have noi 
used a staggered grid as used for the 2FD scheme. Now, Eqs. (3.26~(3.28) may oe 
represented as 

where the vector 4 contains 5N - 3 elements 

, II {(if, cj, fiji, i;! ti’~)-j= l,.Y- 1, $02 @.v j 

and (1 is a square matrix of order 5N- 3. Since the boundary conditiocs 
(3.27)-(3.28) do not contain the eigenvalue w, B is singular. The singularity is 
removed through column operations and the order of the matrices is reduced to 
5(N - 1 j. A standard eigenvalue subroutine may now be used to compute S(;t’- 1 j 
eigenvalues. 

Both the algebraic and exponential stretchings may be employed EO transform the 
physical domain 0 < y < yrnaX to the computational domain - 16 e d 1. owever, 
algebraic stretchings are more robust for spectral methods. We employ the 
stretching 

where b = 1+ 2cr/~q,,, and a = yi y,,,/( yrnaX - 2~~;. Here ~9~ is the iocation corre- 
sponding to 5 = 0, i.e., half the grid points are located in the region 0 f :’ 6 ;‘i. 

The mapping given above clusters grid points near the wall. In high Mach 
number flows one also needs better resolution near the edge of the boundary layer. 
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While other mappings may be designed to cluster points near the edge of the 
boundary layer, we consider a multi-domain spectral collocation method which 
may be used to cluster points in the interior of the physical domain. The multi- 
domain methods will also prove advantageous if there exist multiple regions of 
instability, in which case a number of domains could be used to resolve the critical 
layers. 

Multi-Domain Spectral (MDSP) Collocation Method 

In recent years, multi-domain spectral methods have become fashionable for fluid 
mechanics problems (see, e.g., [ 16-171). Here we use this approach for eigenvalue 
problems. The method is described here for two domains but the same technique 
may be used to construct the algorithm for three or more domains. 

The physical domain 0 d 4’ d JJ,,, is divided into two domains 0 < 4’~ yi and 
J’j < J’ d ?‘max which may be denoted as domain I and domain II, respectively. The 
governing equation (2.32) now may be written in the two domains as 

ADf# + BD,$‘+ CI$‘= 0; 

AD$$” + BD,,~T’ + CI$” = 0; 

with the boundary conditions 

0 d J’ d J’f (3.31) 

YidYdl’max (3.32) 

and 

qq=qj~=~~=qs’j=O; J’=o (3.33) 

,$;‘=$+(+&o; Jj= J’max (3.34) 

(3.35) 

(3.36) 

as in (3.27) and (3.28) above. 
In addition we need interface conditions at y= yi. These are provided by 

requiring the continuity of all the elements of $ at y = yi, i.e., 

We further require that 

(3.37) 

(3.38) 

We will comment on this requirement later. In Eqs. (3.37)-(3.38), we have 10 
conditions that must be satisfied at the interface. 

The physical domains 0 < y d yi and yi < J B yrnax are now transformed to the 
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computational domains g’ and 5” and Chebyshev collocation method is appbieci 
separately to the two domains with collocation points 

in domain I, and 

in domain II. 
The derivative matrices Fik and GJk are constructed for both the domains as 

described above for a single domain. An eigenvalue problem is then set up similar 
to Eq. (3.29), where the vector 4 now contains j(,Vl + 1~2) - 3 eiements given as 

and matrix .4 which is of order 5(N 1 + NZ) - 3 has the following structure w:?er.e 

5 e e E e 8 e E e e 0 ii 0 0 i, t 0 

e e e i e i E 2 e i 0 0 0 G 3 e IO 

? e e t e e e E e e cN r it 0 I:# P 0 

e E E e e e e s e e 111 c 0 0 0 e 0 

E e e E E e e e e E 0 I:# 0 0 '5 E .: 

lillliiiiiC!Z22212 

llllliiiiiY2~22~12 

llllliii~i22E2?12 

llllliiiii2292912 

llllliiii~~?222?2’ 

GOGGOffffffffffGfk 

OOOOOffffffffffnf; 

OGOOOfffffffiffG f I 
OOOOOffffffffffOf/ 

GOOc~offffffffffOfl 

bbbbbbbbbbOOGOOb0 

oooooccccccc~ccoc 

- 
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nonzero elements are indicated by e, f, i, 6, c, 1, and 2. The index i denotes the fact 
that these elements have contributions from both the domains. The entries e, 1, b 
have contributions only from domain 1 while the entriesf, 2, c have contributions 
only from domain 2. The middle five and the last two rows represent the interface 
conditions and the pressure boundary conditions, respectively. Though this struc- Though Th28 contributions rows a model problem. The matrix B is singular since pressure 

boundary conditions and the interface conditions do not contain the eigenvalue cc). 
The singularity is removed by row and column operations and, in the process, the 
order of the system reduces to 5(Nl+ N2 - 2 

j. The 5( Nl + N2 - 2) eigenvalues are 
obtained by the standard approach mentioned above. 

The condition of continuity of fluxes imposed by Eq. (3.38) may be relaxed to 
allow some jump in the flux to balance a suitable combination of the residual of the 
discretized equation from both domains as suggested by Quarteroni and Sacchi- 
Landriani [19]. This particularly makes sense when the stretchings used in the two 
domains are discontinuous at the interface and when different resolutions are used 
in the two domains. Another possibility that we have not explored is using a 
staggered grid as used for the 2FD scheme. In the present context of a multi- 
domain spectral method, all the second-order equations will be enforced at the 
collocation points 

(f = cos z; j= 1, 2, . . . . Nl - 1 

in domain I, and 

.z II xc 

‘i 
=cosN2; 

j= 1, 2, . . . . N2- 1 

in domain II. The velocity components li, i;, \F and temperature f will also be 
defined at these points. The continuity equation will be enforced at 

<.;+ ,;2 = cos 
J-a+ l/2). 

Nl ’ 
j=O, 1, . . . . Nl - 1 

in domain I, and 

t;:I,*=CoS a+ l/2). N2 > j = 0, 1, . . . . N2 - 1 

in domain II. The pressure will also be defined at these points. The use of staggered 
mesh eliminates the need for pressure boundary conditions (3.35)(3.36). More 
importantly, no interface conditions for pressure are required. The staggered grid 
has been used by Macaraeg, Streett, and Hussaini [20] for high speed flows. In the 
context of a single domain spectral method, it was used by Malik, Zang, and 
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Hussaini [21] for incompressible Navier-Stokes equations. Recently, 
[22j has used it for a vortex stability problem. 

If a guess for the temporal eigenvalue is available then one can improve its vaiue 
by a local method. The inverse Rayleigh iteration procedure [14] is one suck 
method which yields cubic convergence. The generalization of this procedure to 
compressible stability eigenvalue problem (3.29) results in rhe following algori-:hm: 

(&ajj~)($(k+!I= (3,411) 
(2 _ ojq” $T!“’ I, = (3,4-j) 

The iteration cycle is started with a guessed eigenvalue wO and by assuming ai;y 
smooth functional distribution for the eigenfunction 
some problems, we have also tried random numbers f 
still the converged solution was obtained. Two iteratio 
algorithm. The inner iteration denoted by index k is performed for a fixed CJ-, 
starting with j= 0. The solution to Eq. (3.41)-(3.42) is obtained and at the end of 
each iteration cycle k the eigenfunction and its adjoint are normalized so that 

cb ik+l~=~~/i+I’:‘max(~‘“+“) f 3.43 1 

~~(k+1)=~~(k+2,imax(~~l”-l’). (3.44 ‘r 

Once a converged solution for $‘” + I’ and ‘aT ” is achieved, the new eige 
may be calculated as 

where the inner product is the usual L, vector inner product. 
The iteration k may now be repeated. Depending upon the initial guess for 

the eigenvalue and eigenfunctions, it takes 4 to 10 inner iterations to achiei;e a 
converged solution for the eigenfunctions. A converged eigenvalue is obtained in 
two or at worst in three outer iterations j. 

An alternative to the inverse Rayleigh iteration procedure is to use Eq. (3.13) as 
for the 4GD scheme. This has the advantage that spatial eigenvalues may also be 
obtained with the same amount of computationa! effort as for the temporal 
problem. This will be discussed in Section 5 below. 

4. TEMPORAL STABILITY RESULTS 

Now we present the results of our calculations to test the performance end 
accuracy of the various numerical schemes discussed above. The test cases are 
described in Table I, where the flow Mach number (M), Reynolds number (R j, the 
ratio of wall temperature to adiabatic wall temperature (2-,~JY-,,,,), stagnarior, tern- 



398 M. R. MALIK 

TABLE I 

Description of Test Cases 

Test 
case 

Mach 
number 

1 0.5 2000 1 500 1.8236 3 
2 1o-6 580 1 500 1.7208 3 
3 2.5 3000 1 600 4.2578 6 
4 10.0 2000 0.1 4200 12.917 13 
5 10.0 1000 1 4200 31.679 32 
6 4.5 1500 1 1100 9.3992 11 

perature (T,), and nondimensional (scaled with P) displacement thickness 6* are 
presented. The length scale L is taken to be L = ,/v,x/u,, where 11, is the kinematic 
viscosity at the boundary layer edge temperature. For hypersonic boundary layers, 
the displacement thickness approaches the boundary layer thickness and the critical 
layer for the most amplified mode lies in close proximity to these thicknesses. 
Also presented in the table is the parameter yi as described in Eq. (3.19) and 
Eqs. (3.3 1 )-( 3.32 ). 

First, results for the Mach 0.5 case are presented in Table II. The wave number 
c( is 0.1, and the Reynolds number is 2000. The performance of 2FD scheme is con- 
sistent with second-order accuracy of the method. The unstable mode is captured 
using only 17 nodes, though the growth rate is almost 50% lower than the desired 
value. However, this is not a serious drawback since the purpose of the global 
method here is to provide a guess of the eigenvalue for local computations using the 
fourth-order scheme. Indeed, this value for N= 16 is used as a guess for all the 
eigenvalues computed using the 4CD scheme presented in the table. Five-digit 
accuracy with this scheme is achieved with 33 node points as compared to the 
results of the SDSP scheme which takes only 25 nodes to achieve the same 

TABLE II 

Real and Imaginary Parts of the Eigenvalue o for Test Case Number 1, z = 0.1, p = 0 

Nfl 2FD 4CD SDSP MDSP 

17 0.029659 0.001338 0.0290542 0.0022046 0.02917687 0.00230046 0.02983413 0.00393174 
25 0.029329 0.001819 0.0290777 0.0022342 0.02908247 0.00224387 0.02907451 0.00224283 
33 0.029216 0.002002 0.0290841 0.0022413 0.02908189 0.00224427 0.02907808 0.00224400 
41 0.029166 0.002088 0.0290835 0.0022430 0.02908185 0.00224419 0.02908167 0.00224419 
45 0.029151 0.002115 0.0290825 0.0022434 0.02908180 0.00224419 0.02908173 0.00224418 
51 0.029135 0.002144 0.0290822 0.0022437 
61 0.029 118 0.002 174 0.0290821 0.0022439 
81 0.02908 19 0.0022441 
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accuracy. For this low Mach number case, the S SP scheme seems to be beik.r 

than the MDSP scheme, since the critical layer still near the wall and mu!ti- 
domain calculation offers no advantage. Furthermore, we have not exper’ 
with the location of the interface to obtain the optimum results for the 
scheme. All of the MDSP results described in this paper were obtaine 
N1 = N2. In any case, six-digit accuracy is achieved with 33. 41, and 81 nodes for 
the SDSP, MDSP, and 4CD schemes, respectively. However, the computationa! 
time for the 4CD scheme (including the time taken to obtain the guess from rhe 
2FD scheme) is considerably lower than the time taken by spectral schemes for 
comparable accuracy. Unless otherwise mentioned, all the results presented in this 
paper have been obtained by using l’max = 500 for the 4CD scheme and yrnaX = 100 
for the 2FD, SDSP, and MDSP schemes. 

In order to show the order of accuracy of the various schemes, the results of 
Tahle II are also presented in Fig. 2 where the error in the eigenvalue is plotted as 
a function of N. The exact value was assumed eo be 0.02905177 -I- 0.~022~~4,~8~~ 
which was obtained from the two spectral schemes. The 2FD scheme is accurate to 
second order, the 4CD scheme is accurate to about fourth order, and the spectral 
schemes converge faster. The accuracy of the 2FD sche may be increase bp 
using the Richardson extrapolation. This was done by aiik and Orszag [6j 
within the context of local methods. However> in cases where eigenvalu: 
convergence may not be monotonic, extrapolation could produce inferior resuits. 

As discussed earlier, Eq. (3.8) allows s in (3.4) to be inverted by using stand.ard 
block-tridiagonal solvers. An LR solver can then be used to obtain the eigenvalues 
of B-IA. Alternatively, the actual boundary conditions (3.7) can be used and thz 
generalized eigenvalue problem (3.4) can be solved by using the QZ aigorithm, This 
was done for test case number 1. Except for the eigenvalues associated with (3.8 5, 

,*-41- 

lo-1OL / I 

10 2 3N 4 5 a 769 
102 

FIG. 2 Absolute error in the real and imaginary parts of the eigenva!ue Q for test case number 1 
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both approaches produced the same eigenvalues. However, the solution with the 
QZ algorithm required 60% more computer time. 

One advantage of the global method is that the whole spectrum of eigenvalues 
may be obtained. The spectral schemes described in this paper may be used to 
study the eigenvalue spectrum of the compressible linear stability problem. This will 
be done in a later paper for supersonic boundary layers. The temporal eigenvalue 
spectrum for the Orr-Sommerfeld equation has been studied by several authors 
(see, e.g., [23]). Here we give some results of the MDSP scheme for the com- 
pressible equations but in the limit of Mach number approaching 0 to simulate the 
Orr-Sommerfeld results. Calculations were actually done for M= lop6 and 
R = 580. Some of the computed eigenvalues are compared with the results of Mack 
[23] in Table III, where the real and imaginary parts of the computed phase 
velocity (c = o/a) are presented. 

We note that our results simulate fairly well the Orr-Sommerfeld results com- 
puted by Mack [23]. However, there is an additional mode which is less stable 
than the second Orr-Sommerfeld mode. This mode was first computed by the 
author’s COSAL code [24] which utilizes the 2FD scheme. In that computer code, 
a local eigenvalue search procedure based on the 2FD discretization and the inverse 
Rayleigh iteration procedure are also included. The local eigenvalue search using 
higher resolution also converged for this new mode. However, the 4CD scheme as 
described above failed to converge for this mode. The obvious question arose 
whether this mode is physical or not? A careful look at the eigenfunction computed 
by COSAL code revealed that the mode had produced large temperature perturba- 
tions and very little associated velocity perturbations, implying that this mode is an 
eigenvalue of the energy equation. Knowing this, Eq. (3.13) in the 4CD scheme was 
replaced by 

(4.1) 

A converged eigenvalue was then obtained as in Table III. The computed 

TABLE III 

Comparison of First 5 Modes (Phase Velocity) of the Compressible Stability Equations in the Incom- 
pressible limit (M= 10m6) with the Orr-Sommerfeld Modes Computed by Mack [23] 

C=0/L? 

MDSP Orr-Sommerfeld modes 

0.3641 0.0079 0.3641 0.0080 
0.2329 -0.1343 
0.2897 -0.2768 0.2897 -0.2769 
0.4839 -0.1921 0.4839 -0.1921 
0.5571 -0.3655 0.5572 -0.3653 

Note. 01 = 0.179, B = 0. R = 580. 
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eigenfunction for this mode along with the first two Brr-Sommerfeld modes are 
presented in Fig. 3. There would, of course, be a whole familyy of discrete eigen- 
values of the energy equation. What relevance these modes of the energy equation 
may have in compressible boundary layer transition might be worth exploring. 

Next, we test the schemes for higher Mach numbers First, the results for a Mach 
2.5 boundary layer are presented in Table IV. The calculation is made for a = 0.06 
and fi = 0.1. Now the performance of the MDSP is better than that of the SDSP 
scheme. The results of the 4CD scheme using N= 25 are better than those of the 
MDSP scheme using the same resolution. This is not uncommon when the results 
of finite-difference and spectral methods are compared. For any given problem, 
there is a minimum resolution needed before spectral convergence is achieved. The 
global calculations using the 2FD and MDSP schemes do not yield any spurious 

1.2 
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FIG. 3. Eigenfunctions for some of the modes of the compressibie stability equations for M= LO-“. 
R = 580. r = 0.179, i( = 0. The first and third modes are also the modes of the Qrr-Sommerfe!d equation. 
Tie second mode results due to energy equation. 
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TABLE IV 

Real and Imaginary Parts of the Eigenvalue w for Test Case Number 3, a = 0.06, b = 0.1 

N+l 2FD 4CD SDSP MDSP 

25 0.0369069 0.0006007 0.0367075 0.0005842 0.0368934 0.0004199 0.0369488 0.0003527 
33 0.0368173 0.0005478 0.0367195 0.0005866 0.0366808 0.0006584 0.0367264 0.0005710 
41 0.0367885 0.0005604 0.0367265 0.0005855 0.0367521 0.0005865 0.0367332 0.0005847 
51 0.0367689 0.0005687 0.0367300 0.0005851 0.0367332 0.0005832 0.0367340 0.0005840 
61 0.0367583 0.0005733 0.0367321 0.0005847 0.0367339 0.0005840 0.0367340 0.0005840 

unstable modes. However, the present formulation of the SDSP scheme yields an 
additional unstable mode. Spurious unstable modes are not uncommon in global 
calculations [25] and special care has to be taken to eliminate these modes. 
Perhaps, a staggered formulation of the SDSP scheme will cure the problem. 

Test case number 4 pertains to a calculation of the second mode [3] at a Mach 
number of 10. Compressible boundary layers have a generalized inflection point 
defined by d/&(p dU/&) = 0. The presence of this inflection point is a sufficient 
condition for instability. The Mach 2.5 calculation performed above shows an 
instability due to the presence of such a generalized inflection point. This is often 
called the first mode of instability. This mode is most unstable for oblique waves 
and is stabilized by wall cooling, favorable pressure gradient, and wall suction. At 
Mach numbers above about 4, there are additional modes which, for their exist- 
ence, do not require the presence of a generalized *inflection point. The first of these 
modes is generally the most unstable one and dominates boundary layer transition 
at high Mach numbers [3, 261. This mode has the highest growth rate when the 
wave-angle is zero and cannot be stabilized with wall cooling. In fact, wall cooling 
has a destabilizing effect on this mode. It is this mode that is being computed in test 
case number 4 with a wall to adiabatic wall temperature ratio of 0.1, M = 0.105, and 
R = 2000. The eigenfunctions for this mode are presented in Fig. 4. While the peak 

-1.2L I I-I- 
O 5 10 15 20 25 30 

Y 

FIG. 4. Disturbance eigenfunctions for a hypersonic boundary layer, ,W= 10, R= 2000, 
T,jT,,,=O.l, ~(=0.105~ B=O. 
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TABLE V 

iPeal and Imagmary Parts of the Eigenvalue o for Test Cese Number 4. z = 0.105. b = C 

it’ + 1 7FD 4CD SDSP MDSP 
-- 

25 0.0971936 0.0022453 0.0974114 0.0020600 0.0969286 0.0020306 0.0976239 &XI19983 
33 0.0971538 0.0019907 0.0974615 0.0019927 0.0974286 !I0018622 0.0974575 0.00X6?! 
41 0.0973031 0.0019763 0.0971765 0.0020341 0.0975555 0.0520086 0.0974995 0.0020!29 
51 0.0973671 0.0020!22 0.0974823 0.0020308 0.0974858 0.0020516 0.0974802 0.003X7-8 
61 0.0974002 0.0020224 0.0974832 0.0020308 0.0974774 0.0020303 G.0973864 0.00203i6 
81 0.0974837 0.0020304 

of the temperature perturbation lies near the edge of the boundary layer, it is not 
very sharp and this mode is well captured by all the schemes. The results sf these 
calculations are presented in Table V. The 2FD scheme provides a very good guess 
for the eigenvalue even with N= 25. The 4CD scheme provides five-digit accuracy 
with 51 node points. The MDSP scheme provides five-digit accuracy with the same 
number of node points. The performance of the SDSP scheme is somewhat poor as 
only four-digit convergence is achieved. The eigenvalue oscillates in the fifth digit. 
This may be explained by the resolution provided by the two spectral schemes in 
the neighborhood of J’ = yi ([ = 0) as depicted in Fig. 5. The SDSP scheme provides 
the highest resolution near the wall and then it steadily deteriorates away from the 
wall. The MDSP scheme provides relatively less resolution near the wa!i bul 
provides more resolution near < = 0. 

A much more severe test for the various schemes is prcvided in Table VI, where 
results are presented for test case number 5. The wall temperature is now adiabatic? 
Mach number is 10, cy = 0.12, and R = 1000. The parameters chosen are such hat 
they produce a mode whose eigenfunction consists of a very sharp peak in tem- 
perature perturbation near the boundary layer edge. The relative magnitude of 
velocity fluctuations is very small as shown in Fig. 5. The performance of the SCD 

FIG. 5. Comparison of resolution provided by SDSP and MDSP scheme for the same total node 
points. 



404 M. R. MALIK 

TABLE VI 

Real and Imaginary Parts of the Eigenvalue w for Test Case Number 5, lr = 0.12, j? = 0 

N + I 2FD 4CD SDSP MDSP 

25 0.1163679 0.0014440 0.1157999 -0.0000071 0.1145183 0.0009373 0.1157335 -0.0002989 

33 0.1158070 0.0009287 0.1158523 0.0001842 0.1147691 0.0007327 0.1158719 0.0001094 

41 0.1157499 0.0004592 0.1158613 0.0001416 0.1150698 0.0001450 0.1159041 0.0001143 

51 0.1159275 0.0003503 0.1158590 0.0001496 0.1155532 0.0003080 0.1158529 0.0001999 

61 0.1158706 0.000325 1 0.1158630 0.0001521 0.1161434 -0.0001949 0.1158519 0.0001357 

81 0.1158647 0.0001529 

scheme is again excellent with five-digit convergence provided by 61 nodes. Due to 
second-order accuracy, the convergence of the 2FD scheme is slow but consistent. 
For this test case, the 4CD scheme did not converge for the guess provided by the 
25node solution with the 2FD scheme. However, it converged with the guess 
provided by the 33-node solution using the 2FD scheme. 

The performance of the SDSP scheme is quite poor as the eigenvalue oscillates; 
with a 61-node solution indicating no instability while the 4CD scheme gives the 
growth rate to be 0.0001529. The performance of the MDSP scheme is better but 
not completely satisfactory as there are some oscillations in the eigenvalue. These 
oscillations, perhaps, could be controlled with an improved treatment of the inter- 
face as discussed above. Even for this case, both the 2FD and MDSP schemes only 
give one unstable mode and no spurious unstable modes. One of the reviewers of 
this paper used his IVM code (4th-order Runge-Kutta) to compute this mode 
using 100 integration steps. With the 2FD eigenvalue for N = 24 as the guess, there 
was no convergence; with 0.116 + O.O0015i, there was. Starting the integration at 
y= 39.6, he got the eigenvalue 0.1158627 +O.O001557i; starting at 37.5, he got 
0.1158644 + 0.00015391 

FIG. 6. Disturbance eigenfunction for a hypersonic boundary layer, M= 10, R =2000, adiabatic 
wall, a = 0.12, b = 0. 
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TABLE VII 

Spatial Eigenvalue c( for Test Case Number 6, o = 0.23, fi = 0 

N+t 2FD MDSP 

25 0.2490059 -0.0051672 0.2537500 -0.0030012 
33 0.2535164 -0.0052589 0.2533568 -0.0029078 
41 0.2546765 -0.003503 1 0.2533264 -0.0028657 
51 0.2535841 -0.0032119 0.2534592 -0.0028893 
61 0.2536248 -0.0030988 0.2534081 -0.0028860 

Note. The approximation a’=0 has been made. 

While the computational time increases linearly with N for the 4CD scheme, it 
varies as N3 for global calculations using 2FD and MDSP schemes. 

Since the 4CD scheme uses a local method, the spatial eigenvalue solution may 
be obtained without the approximation ~1~ =O. For the spatial eigenvalue c(, 
Eq. (3.13) and (3.14) are replaced by 

and 

(5.4) 

(5.5) 

Thus, this solution is obtained in the same time as for the temporal problem using 
block-tridiagonal inversions. For local eigenvalue problems, the MDSP scheme can 
also be used to obtain TV by using Eqs. (5.4)-(5.5) without requiring the approxima- 
tion ~1~ = 0 needed above for the global problem. We have done so again for the 
Mach 4.5 test case and the results are presented in Table IX. Five-digit agreement 
between the two schemes is achieved with 61 nodes for the MDSP scheme and 81 
nodes for the 4CD scheme. Here, our purpose was simply to demonstrate the 
spatial local eigenvalue solution capability of the MDSP scheme. We believe that 
its performance could be improved by imposing asymptotic boundary conditions in 

TABLE VIII 

Execution Time on Cyber 860 Computer for Spatial Eigenvalue 
Calculation for Test Case Number 6 

Scheme Time (s) 

2FD 32 
4CD 2 

MDSP 76 

Note. Using N = 32. 
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TABLE IX 

Spatial Eigenvalue u for Test Case Number 6, (ri = 0.23. fl= 0 

.5'+ i 4CD MDSP 
- 

25 0.2536404 -0.0023801 0.2549372 -0.0004127 
33 0.2534544 -0.0024718 0.2519197 -0.0022167 
41 02534276 -0.0024856 0.253369! - 0.0025073: 
ji 0.1534168 -0.0024917 0.2533993 - 0.00234 12 
61 0.2534120 -0.0024933 U.2534048 -0.002492i 
a1 0.253408 1 -0.0024932 

Arote. MDSP calclllations performed using the local method. 

the free-stream at a smaller distance from the wall. In the present exam&, we 
imposed zero perturbation boundary conditions at y = 100 as for the global 
method. The performance of the 4CD scheme may also be improved in a similar 
fashion 

A comparison of the results in Table VII and Table IX mdicates the order of 
error incurred due to the approximation a2 = 0. While the real part of the eigen- 
value is the same up to four digits, the imaginary part (growth rate) is in error by 
about 0.0004. This amounts to a 15 % error in the growth rate. In percentage terms, 
this error will be even larger near the neutrai curve. However, the purpose of the 
approximation is to provide a “cheap guess” for ?he spatial local calculations. The 
author has performed a number of calculations at various Mach numbers ranging 
from about 0.8 to 10 and this approximation serves its purpose. The alternative, of 
course, is to pay almost six times higher computational cost. Of course, lf the 
complete global eigenvalue spectrum is required, the fuil 9th-order system (see 
Eq. (5.2)) may be solved. In Ref. [ 121, tbe full system for the incompressible 
problem was solved. 

It is worth mentioning that both of the local metheds compared in Table HX 
could be used to generate neutral curves or curves of constam growth. If9 fclr 

ple, the locus of wi = oli = 0 is sought then given an initial guess for R i and ~12 I ~ 
the corrections Oa, and do, may be determined from the equations 

It is less efficient to use an inverse Rayleigh iteration procedure to construct curves 
of constant growth. 

Finally, we show the effect of various stretchings on the spatial eigenvalue com- 
puted by the 4CD scheme (see Table X). This calculation is performed for Mach 
10 flow at a Reynolds number of 1000 and to = 0.09. The wall temperature was ser 
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TABLE X 

Effect of Various Stretchings on the Eigenvalue u Using 4CD Scheme 

N+l 

11 0.095110 0.004124 0.097082 - 0.002776 0.096623 - 0.002548 
21 0.095830 -0.002312 0.096089 -0.001716 0.095959 -0.002162 
31 0.096020 -0.002175 0.095985 -0.002177 0.095937 -0.002156 
41 0.095962 -0.002142 0.095950 -0.002144 0.095934 -0.002156 
51 0.095943 - 0.002 152 0.095943 -0.002154 0.095933 -0.002156 
61 0.095938 -0.002155 0.095938 -0.002154 0.095933 -0.002156 
71 0.095936 -0.002156 0.095935 -0.002156 0.095933 -0.002156 
81 0.095935 -0.002156 0.095934 -0.002156 0.095933 -0.002156 

Stretching 1 
(Eq. (3.1) with a=?!*) 

Stretching 2 
(Eq. (3.1 j with 

a = 6*J:ma,; (l’max-- 6*)) 
Stretching 3 

(Eqs. (3.18)-(3.19)) 

Note. M= 10, R= 1000, w =0.09, j'max = 100 

at 2000” R while the free stream static temperature was held at 480” R. In this case 
Ymax = 100. Three different stretchings were considered: 

1. same as Eq. (3.1) but with a=6*. 

2. same as Eq. (3.1) with a= yrnax 6*/(ymax - 2 a*). 
3. The stretching given by Eqs. (3.18)-(3.19) with two-thirds of the total node 

points used in the region J’< ~1~. 

The results for a are presented for N= 10, 20, . . . . 80. While for sufficiently refined 
grids all three stretchings give comparable results, the performance of stretching 
number 3 is superior to other stretchings, particularly for crude mesh. This 
stretching provides live-digit accuracy at this Mach number for only 31 node 
points. The imaginary part is converged to six digits for the same resolution. 

6. CONCLUDING REMARKS 

We have developed and compared four different schemes for the solution of com- 
pressible boundary layer stability equations. Both the temporal and spatial stability 
are considered for a global eigenvalue spectrum and a local eigenvalue search. The 
discretizations considered include a second-order staggered finite-difference scheme, 
a fourth-order accurate two-point compact scheme, a single-domain Chebyshev 
spectral collocation scheme, and a multi-domain spectral collocation scheme. All 
the schemes perform quite well at low Mach numbers with collocation schemes 
providing spectral accuracy. A new mode of the compressible stability equations is 
identified in the limit of vanishing Mach number. 

As the Mach number increases, the performance of the single domain spectral 



HYPERSONIC BOUNDARY LAYER STABILITY @$: 

collocation scheme deteriorates due to the outward movement of the critical layer. 
Therefore, a multi-domain spectral method is designed to provide better resolutjoa 
of the critical layer. Results are presented for this scheme for temporal gio~al 
eigenvalue calculations, spatial global eigenvalue calcuiations, and spatiai local 
eigenvalue calculations. The results are compared with other schemes. The overa!i 
performance of the compact difference scheme is excellent with very accurate 
eigenvalues for less than 81 node points, in general, and very little computer time. 
The performance of the multi-domain spectral method at high Mach numbers needs 
to be improved. Perhaps, a different treatment of the interface will yield berter 
convergence. 

APPENDIX I 

The non-zero elements of the coefficient matrices in Eq. (2.32) for 30 basic 4ow 
are given below. For results presented in this paper, set &t’=O: 

cl2 = - h’U’/(,uT) + ‘tl* T’ 
P CO- 
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C,, = - iuR/p 

c =A!.& 0’“+1-e T’U’ 
” pdT p dT’ 

Cl, = - c$ll 

Czl = iu A * T’&,/l, 
PdT 

C,, = - ilRJ(I,pT) - (a’ + P2)/12 

C,, = ia 

C,, = - T’/T 

C,, = iyM”c 

C,, = - i</T 

C,j = ip 

C,, = 2i(y - 1) M20(uU’ + /?W’) - aRTI/ 

C,, = it(y - l)M”aR/p 

C,, = - i<Ra/(pT) - (a2 + /I’) + (y - 1 1 .I/ ‘0’: gT ( U2 f W’2) + k/‘/k 
~J 

c,, = - up1, 

C,, = ip T’ - R W’j(pT) 

Cj, = - $R/p 

C,, = - iSRl(pT) - (u’ + 12j3’) 

where ( )’ = d/d)> and 

s'=uu+pw-0 

I,= j-+2/p. 

APPENDIX II 

The non-zero elements of the coefficient matrix in Eq. (2.36) for 3D basic flow 
are given below. For the results presented in this paper, set W=O: 
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a,! = 1 d/t - ijfi,aT’jT-- zip - - T’ 
PdT 

cl48 = -i&f 

Oj(j= 1 

A62 = -  .z(y -  l)M2aU 

aG3 = - 2iji’ - 1) M’o(aU’ + PW’) + cRT’:‘(/iT) 

a&s = - i((y - 1) M%R/p 

1 dit ca,S=iSRa!(~T)+(r’+82)--(y-IjM20--(~”+~’:)-k”:k 
p dT 

@6E = - 2k’ ik 
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Nfj8 = -2(1’- 1)M’oW’ 

U78 - -1 

a,,= -i~d~TT’-ilil~T’lTiRW’!(~T) 

1 & a86= --- W’ 
PdT 

as7 = iSR/(pT) +x2 + /3’ 

1 dP T’ - _-- 
“‘- p dT 

where, ( )’ = d/c@ and 

~=(au+pw-o) 

x = l/(R/p f iyMZi;12j 

l,= j+ijp. 
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